Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

On the grasshopper problem with signed jumps (1008.2936v3)

Published 17 Aug 2010 in math.CO and math.AC

Abstract: The 6th problem of the 50th International Mathematical Olympiad (IMO), held in Germany, 2009, was the following. Let $a_1,a_2,...,a_n$ be distinct positive integers and let $M$ be a set of $n-1$ positive integers not containing $s=a_1+a_2+...+a_n$. A grasshopper is to jump along the real axis, starting at the point 0 and making $n$ jumps to the right with lengths $a_1,a_2,...,a_n$ in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in $M$. The problem was discussed in many on-line forums, as well by communities of students as by senior mathematicians. Though there have been attempts to solve the problem using Noga Alon's famous Combinatorial Nullstellensatz, up to now all known solutions to the IMO problem are elementary and inductive. In this paper we show that if the condition that the numbers $a_1,...a_n$ are positive is omitted, it allows us to apply the polynomial method to solve the modified problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.