Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The ground state of binary systems with a periodic modulation of the linear coupling (1008.2916v1)

Published 17 Aug 2010 in quant-ph and cond-mat.quant-gas

Abstract: We consider a quasi-one-dimensional two-component systm, described by a pair of Nonlinear Schr\"{o}dinger/Gross-Pitaevskii Equations (NLSEs/GPEs), which are coupled by the linear mixing, with local strength $\Omega $, and by the nonlinear incoherent interaction. We assume the self-repulsive nonlinearity in both components, and include effects of a harmonic trapping potential. The model may be realized in terms of periodically modulated slab waveguides in nonlinear optics, and in Bose-Einstein condensates too. Depending on the strengths of the linear and nonlinear couplings between the components, the ground states (GSs) in such binary systems may be symmetric or asymmetric. In this work, we introduce a periodic spatial modulation of the linear coupling, making $\Omega $ an odd, or even function of the coordinate. The sign flips of $\Omega (x)$ strongly modify the structure of the GS in the binary system, as the relative sign of its components tends to lock to the local sign of $\Omega $. Using a systematic numerical analysis, and an analytical approximation, we demonstrate that the GS of the trapped system contains one or several kinks (dark solitons) in one component, while the other component does not change its sign. Final results are presented in the form of maps showing the number of kinks in the GS as a function of the system's parameters, with the odd/even modulation function giving rise to the odd/even number of the kinks. The modulation of $\Omega (x)$ also produces a strong effect on the transition between states with nearly equal and strongly unequal amplitudes of the two components.

Summary

We haven't generated a summary for this paper yet.