Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint maximum likelihood estimation of carrier and sampling frequency offsets for OFDM systems (1008.2613v1)

Published 16 Aug 2010 in cs.IT and math.IT

Abstract: In orthogonal-frequency division multiplexing (OFDM) systems, carrier and sampling frequency offsets (CFO and SFO, respectively) can destroy the orthogonality of the subcarriers and degrade system performance. In the literature, Nguyen-Le, Le-Ngoc, and Ko proposed a simple maximum-likelihood (ML) scheme using two long training symbols for estimating the initial CFO and SFO of a recursive least-squares (RLS) estimation scheme. However, the results of Nguyen-Le's ML estimation show poor performance relative to the Cramer-Rao bound (CRB). In this paper, we extend Moose's CFO estimation algorithm to joint ML estimation of CFO and SFO using two long training symbols. In particular, we derive CRBs for the mean square errors (MSEs) of CFO and SFO estimation. Simulation results show that the proposed ML scheme provides better performance than Nguyen-Le's ML scheme.

Citations (58)

Summary

We haven't generated a summary for this paper yet.