Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Brauer-Thrall for totally reflexive modules (1008.1737v2)

Published 10 Aug 2010 in math.AC, math.RA, and math.RT

Abstract: Let R be a commutative noetherian local ring that is not Gorenstein. It is known that the category of totally reflexive modules over R is representation infinite, provided that it contains a non-free module. The main goal of this paper is to understand how complex the category of totally reflexive modules can be in this situation. Local rings (R,m) with m3=0 are commonly regarded as the structurally simplest rings to admit diverse categorical and homological characteristics. For such rings we obtain conclusive results about the category of totally reflexive modules, modeled on the Brauer-Thrall conjectures. Starting from a non-free cyclic totally reflexive module, we construct a family of indecomposable totally reflexive R-modules that contains, for every n in N, a module that is minimally generated by n elements. Moreover, if the residue field R/m is algebraically closed, then we construct for every n in N an infinite family of indecomposable and pairwise non-isomorphic totally reflexive R-modules, that are all minimally generated by n elements. The modules in both families have periodic minimal free resolutions of period at most 2.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube