Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deterministic Polynomial-time Approximation Scheme for Counting Knapsack Solutions (1008.1687v1)

Published 10 Aug 2010 in cs.DS

Abstract: Given n elements with nonnegative integer weights w1,..., wn and an integer capacity C, we consider the counting version of the classic knapsack problem: find the number of distinct subsets whose weights add up to at most the given capacity. We give a deterministic algorithm that estimates the number of solutions to within relative error 1+-eps in time polynomial in n and 1/eps (fully polynomial approximation scheme). More precisely, our algorithm takes time O(n3 (1/eps) log (n/eps)). Our algorithm is based on dynamic programming. Previously, randomized polynomial time approximation schemes were known first by Morris and Sinclair via Markov chain Monte Carlo techniques, and subsequently by Dyer via dynamic programming and rejection sampling.

Citations (42)

Summary

We haven't generated a summary for this paper yet.