Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Trivariate monomial complete intersections and plane partitions (1008.1426v2)

Published 8 Aug 2010 in math.CO and math.AC

Abstract: We consider the homogeneous components U_r of the map on R = k[x,y,z]/(xA, yB, zC) that multiplies by x + y + z. We prove a relationship between the Smith normal forms of submatrices of an arbitrary Toeplitz matrix using Schur polynomials, and use this to give a relationship between Smith normal form entries of U_r. We also give a bijective proof of an identity proven by J. Li and F. Zanello equating the determinant of the middle homogeneous component U_r when (A, B, C) = (a + b, a + c, b + c) to the number of plane partitions in an a by b by c box. Finally, we prove that, for certain vector subspaces of R, similar identities hold relating determinants to symmetry classes of plane partitions, in particular classes 3, 6, and 8.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.