Symmetrized Perturbation Determinants and Applications to Boundary Data Maps and Krein-Type Resolvent Formulas
Abstract: The aim of this paper is twofold: On one hand we discuss an abstract approach to symmetrized Fredholm perturbation determinants and an associated trace formula for a pair of operators of positive-type, extending a classical trace formula. On the other hand, we continue a recent systematic study of boundary data maps, that is, 2 \times 2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schr\"odinger operators on a compact interval [0,R] with separated boundary conditions at 0 and R. One of the principal new results in this paper reduces an appropriately symmetrized (Fredholm) perturbation determinant to the 2\times 2 determinant of the underlying boundary data map. In addition, as a concrete application of the abstract approach in the first part of this paper, we establish the trace formula for resolvent differences of self-adjoint Schr\"odinger operators corresponding to different (separated) boundary conditions in terms of boundary data maps.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.