Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Cycles and Trees in Sublinear Time (1007.4230v3)

Published 23 Jul 2010 in cs.DS and cs.DM

Abstract: We present sublinear-time (randomized) algorithms for finding simple cycles of length at least $k\geq 3$ and tree-minors in bounded-degree graphs. The complexity of these algorithms is related to the distance of the graph from being $C_k$-minor-free (resp., free from having the corresponding tree-minor). In particular, if the graph is far (i.e., $\Omega(1)$-far) {from} being cycle-free, i.e. if one has to delete a constant fraction of edges to make it cycle-free, then the algorithm finds a cycle of polylogarithmic length in time $\tildeO(\sqrt{N})$, where $N$ denotes the number of vertices. This time complexity is optimal up to polylogarithmic factors. The foregoing results are the outcome of our study of the complexity of {\em one-sided error} property testing algorithms in the bounded-degree graphs model. For example, we show that cycle-freeness of $N$-vertex graphs can be tested with one-sided error within time complexity $\tildeO(\poly(1/\e)\cdot\sqrt{N})$. This matches the known $\Omega(\sqrt{N})$ query lower bound, and contrasts with the fact that any minor-free property admits a {\em two-sided error} tester of query complexity that only depends on the proximity parameter $\e$. For any constant $k\geq3$, we extend this result to testing whether the input graph has a simple cycle of length at least $k$. On the other hand, for any fixed tree $T$, we show that $T$-minor-freeness has a one-sided error tester of query complexity that only depends on the proximity parameter $\e$. Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where distances are measured with respect to the actual number of edges. Such an extension is not possible with respect to finding tree-minors in $o(\sqrt{N})$ complexity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Artur Czumaj (35 papers)
  2. Oded Goldreich (4 papers)
  3. Dana Ron (32 papers)
  4. C. Seshadhri (89 papers)
  5. Asaf Shapira (47 papers)
  6. Christian Sohler (27 papers)
Citations (44)

Summary

We haven't generated a summary for this paper yet.