Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian nonparametric estimation of the spectral density of a long or intermediate memory Gaussian process (1007.3823v2)

Published 22 Jul 2010 in stat.ME, math.ST, and stat.TH

Abstract: A stationary Gaussian process is said to be long-range dependent (resp., anti-persistent) if its spectral density $f(\lambda)$ can be written as $f(\lambda)=|\lambda|{-2d}g(|\lambda|)$, where $0<d<1/2$ (resp., $-1/2<d<0$), and $g$ is continuous and positive. We propose a novel Bayesian nonparametric approach for the estimation of the spectral density of such processes. We prove posterior consistency for both $d$ and $g$, under appropriate conditions on the prior distribution. We establish the rate of convergence for a general class of priors and apply our results to the family of fractionally exponential priors. Our approach is based on the true likelihood and does not resort to Whittle's approximation.

Summary

We haven't generated a summary for this paper yet.