Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Submodular spectral functions of principal submatrices of a hermitian matrix, extensions and applications (1007.3478v4)

Published 20 Jul 2010 in math.SP and cs.DM

Abstract: We extend the multiplicative submodularity of the principal determinants of a nonnegative definite hermitian matrix to other spectral functions. We show that if $f$ is the primitive of a function that is operator monotone on an interval containing the spectrum of a hermitian matrix $A$, then the function $I\mapsto {\rm tr} f(A[I])$ is supermodular, meaning that ${\rm tr} f(A[I])+{\rm tr} f(A[J])\leq {\rm tr} f(A[I\cup J])+{\rm tr} f(A[I\cap J])$, where $A[I]$ denotes the $I\times I$ principal submatrix of $A$. We discuss extensions to self-adjoint operators on infinite dimensional Hilbert space and to $M$-matrices. We discuss an application to CUR approximation of nonnegative hermitian matrices.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube