Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Lower Bounds for the Cop Number When the Robber is Fast (1007.1734v2)

Published 10 Jul 2010 in math.CO

Abstract: We consider a variant of the Cops and Robbers game where the robber can move t edges at a time, and show that in this variant, the cop number of a d-regular graph with girth larger than 2t+2 is Omega(dt). By the known upper bounds on the order of cages, this implies that the cop number of a connected n-vertex graph can be as large as Omega(n{2/3}) if t>1, and Omega(n{4/5}) if t>3. This improves the Omega(n{(t-3)/(t-2)}) lower bound of Frieze, Krivelevich, and Loh (Variations on Cops and Robbers, J. Graph Theory, 2011) when 1<t<7. We also conjecture a general upper bound O(n{t/t+1}) for the cop number in this variant, generalizing Meyniel's conjecture.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)