2000 character limit reached
Lower Bounds for the Cop Number When the Robber is Fast (1007.1734v2)
Published 10 Jul 2010 in math.CO
Abstract: We consider a variant of the Cops and Robbers game where the robber can move t edges at a time, and show that in this variant, the cop number of a d-regular graph with girth larger than 2t+2 is Omega(dt). By the known upper bounds on the order of cages, this implies that the cop number of a connected n-vertex graph can be as large as Omega(n{2/3}) if t>1, and Omega(n{4/5}) if t>3. This improves the Omega(n{(t-3)/(t-2)}) lower bound of Frieze, Krivelevich, and Loh (Variations on Cops and Robbers, J. Graph Theory, 2011) when 1<t<7. We also conjecture a general upper bound O(n{t/t+1}) for the cop number in this variant, generalizing Meyniel's conjecture.
Collections
Sign up for free to add this paper to one or more collections.