Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Pathwidth to Connected Pathwidth (1007.1269v2)

Published 8 Jul 2010 in cs.DM

Abstract: It is proven that the connected pathwidth of any graph $G$ is at most $2\cdot\pw(G)+1$, where $\pw(G)$ is the pathwidth of $G$. The method is constructive, i.e. it yields an efficient algorithm that for a given path decomposition of width $k$ computes a connected path decomposition of width at most $2k+1$. The running time of the algorithm is $O(dk2)$, where $d$ is the number of `bags' in the input path decomposition. The motivation for studying connected path decompositions comes from the connection between the pathwidth and the search number of a graph. One of the advantages of the above bound for connected pathwidth is an inequality $\csn(G)\leq 2\sn(G)+3$, where $\csn(G)$ and $\sn(G)$ are the connected search number and the search number of $G$. Moreover, the algorithm presented in this work can be used to convert a given search strategy using $k$ searchers into a (monotone) connected one using $2k+3$ searchers and starting at an arbitrary homebase.

Citations (31)

Summary

We haven't generated a summary for this paper yet.