Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

An extension of disjunctive programming and its impact for compact tree formulations (1007.1136v1)

Published 7 Jul 2010 in math.OC and math.CO

Abstract: In the 1970's, Balas introduced the concept of disjunctive programming, which is optimization over unions of polyhedra. One main result of his theory is that, given linear descriptions for each of the polyhedra to be taken in the union, one can easily derive an extended formulation of the convex hull of the union of these polyhedra. In this paper, we give a generalization of this result by extending the polyhedral structure of the variables coupling the polyhedra taken in the union. Using this generalized concept, we derive polynomial size linear programming formulations (compact formulations) for a well-known spanning tree approximation of Steiner trees, for Gomory-Hu trees, and, as a consequence, of the minimum $T$-cut problem (but not for the associated $T$-cut polyhedron). Recently, Kaibel and Loos (2010) introduced a more involved framework called {\em polyhedral branching systems} to derive extended formulations. The most parts of our model can be expressed in terms of their framework. The value of our model can be seen in the fact that it completes their framework by an interesting algorithmic aspect.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)