Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the independence polynomial of an antiregular graph

Published 6 Jul 2010 in cs.DM and math.CO | (1007.0880v1)

Abstract: A graph with at most two vertices of the same degree is called antiregular (Merris 2003), maximally nonregular (Zykov 1990) or quasiperfect (Behzad, Chartrand 1967). If s_{k} is the number of independent sets of cardinality k in a graph G, then I(G;x) = s_{0} + s_{1}x + ... + s_{alpha}x{alpha} is the independence polynomial of G (Gutman, Harary 1983), where alpha = alpha(G) is the size of a maximum independent set. In this paper we derive closed formulae for the independence polynomials of antiregular graphs. In particular, we deduce that every antiregular graph A is uniquely defined by its independence polynomial I(A;x), within the family of threshold graphs. Moreover, I(A;x) is logconcave with at most two real roots, and I(A;-1) belongs to {-1,0}.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.