Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Weyl-Titchmarsh Theory for Schroedinger Operators with Strongly Singular Potentials (1007.0136v3)

Published 1 Jul 2010 in math.SP, math-ph, and math.MP

Abstract: We develop Weyl-Titchmarsh theory for Schroedinger operators with strongly singular potentials such as perturbed spherical Schroedinger operators (also known as Bessel operators). It is known that in such situations one can still define a corresponding singular Weyl m-function and it was recently shown that there is also an associated spectral transformation. Here we will give a general criterion when the singular Weyl function can be analytically extended to the upper half plane. We will derive an integral representation for this singular Weyl function and give a criterion when it is a generalized Nevanlinna function. Moreover, we will show how essential supports for the Lebesgue decomposition of the spectral measure can be obtained from the boundary behavior of the singular Weyl function. Finally, we will prove a local Borg-Marchenko type uniqueness result. Our criteria will in particular cover the aforementioned case of perturbed spherical Schroedinger operators.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.