2000 character limit reached
Nonstable $K$--theory for extension algebras of the simple purely infinite $C^*$--algebra by certain $C^{*}$--algebras (1006.5725v1)
Published 29 Jun 2010 in math.OA
Abstract: Let $0\longrightarrow \B\stackrel{j}{\longrightarrow}E\stackrel{\pi}{\longrightarrow}\A\longrightarrow 0$ be an extension of $\A$ by $\B$, where $\A$ is a unital simple purely infinite $C{*}$--algebra. When $\B$ is a simple separable essential ideal of the unital $C{*}$--algebra $E$ with $\RR(\B)=0$ and {\rm(PC)}, $K_{0}(E)={[p]\mid p$ is a projection in $E\setminus B}$; When $B$ is a stable $C{*}$--algebra, $\U(C(X,E))/\U_0(C(X,E))\cong K_1(C(X,E))$ for any compact Hausdorff space $X$.