Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Conformal submanifold geometry I-III (1006.5700v1)

Published 29 Jun 2010 in math.DG

Abstract: In Part I, we develop the notions of a Moebius structure and a conformal Cartan geometry, establish an equivalence between them; we use them in Part II to study submanifolds of conformal manifolds in arbitrary dimension and codimension. We obtain Gauss-Codazzi-Ricci equations and a conformal Bonnet theorem characterizing immersed submanifolds of the conformal n-sphere. These methods are applied in Part III to study constrained WiLLMore surfaces, isothermic surfaces, Guichard surfaces and conformally-flat submanifolds with flat normal bundle, and their spectral deformations, in arbitrary codimension. The high point of these applications is a unified theory of Moebius-flat submanifolds, which include Guichard surfaces and conformally flat hypersurfaces.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.