Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Degree Distributions for Uniform Small World Rings (1006.4900v2)

Published 25 Jun 2010 in cs.DC

Abstract: Motivated by Kleinberg's (2000) and subsequent work, we consider the performance of greedy routing on a directed ring of $n$ nodes augmented with long-range contacts. In this model, each node $u$ is given an additional $D_u$ edges, a degree chosen from a specified probability distribution. Each such edge from $u$ is linked to a random node at distance $r$ ahead in the ring with probability proportional to $1/r$, a "harmonic" distance distribution of contacts. Aspnes et al. (2002) have shown an $O(\log2 n / \ell)$ bound on the expected length of greedy routes in the case when each node is assigned exactly $\ell$ contacts and, as a consequence of recent work by Dietzfelbinger and Woelfel (2009), this bound is known to be tight. In this paper, we generalize Aspnes' upper bound to show that any degree distribution with mean $\ell$ and maximum value $O(\log n)$ has greedy routes of expected length $O(\log2n / \ell)$, implying that any harmonic ring in this family is asymptotically optimal. Furthermore, for a more general family of rings, we show that a fixed degree distribution is optimal. More precisely, if each random contact is chosen at distance $r$ with a probability that decreases with $r$, then among degree distributions with mean $\ell$, greedy routing time is smallest when every node is assigned $\floor{\ell}$ or $\ceiling{\ell}$ contacts.

Summary

We haven't generated a summary for this paper yet.