Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SPOT: An R Package For Automatic and Interactive Tuning of Optimization Algorithms by Sequential Parameter Optimization (1006.4645v1)

Published 23 Jun 2010 in cs.NE, cs.AI, math.OC, and stat.AP

Abstract: The sequential parameter optimization (SPOT) package for R is a toolbox for tuning and understanding simulation and optimization algorithms. Model-based investigations are common approaches in simulation and optimization. Sequential parameter optimization has been developed, because there is a strong need for sound statistical analysis of simulation and optimization algorithms. SPOT includes methods for tuning based on classical regression and analysis of variance techniques; tree-based models such as CART and random forest; Gaussian process models (Kriging), and combinations of different meta-modeling approaches. This article exemplifies how SPOT can be used for automatic and interactive tuning.

Citations (53)

Summary

We haven't generated a summary for this paper yet.