Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vertex Sparsifiers: New Results from Old Techniques (1006.4586v3)

Published 23 Jun 2010 in cs.DS

Abstract: Given a capacitated graph $G = (V,E)$ and a set of terminals $K \subseteq V$, how should we produce a graph $H$ only on the terminals $K$ so that every (multicommodity) flow between the terminals in $G$ could be supported in $H$ with low congestion, and vice versa? (Such a graph $H$ is called a flow-sparsifier for $G$.) What if we want $H$ to be a "simple" graph? What if we allow $H$ to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier $H$ that maintains congestion up to a factor of $O(\log k/\log \log k)$, where $k = |K|$, (b) a convex combination of trees over the terminals $K$ that maintains congestion up to a factor of $O(\log k)$, and (c) for a planar graph $G$, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in $G$. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.

Citations (75)

Summary

We haven't generated a summary for this paper yet.