Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological Hochschild Homology of $K/p$ as a $K_p^\wedge$ module (1006.4347v2)

Published 22 Jun 2010 in math.AT

Abstract: Let $R$ be an $E_\infty$-ring spectrum. Given a map $\zeta$ from a space $X$ to $BGL_1R$, one can construct a Thom spectrum, $X\zeta$, which generalises the classical notion of Thom spectrum for spherical fibrations in the case $R=S0$, the sphere spectrum. If $X$ is a loop space ($\simeq \Omega Y$) and $\zeta$ is homotopy equivalent to $\Omega f$ for a map $f$ from $Y$ to $B2GL_1R$, then the Thom spectrum has an $A_\infty$-ring structure. The Topological Hochschild Homology of these $A_\infty$-ring spectra is equivalent to the Thom spectrum of a map out of the free loop space of $Y$. This paper considers the case $X=S1$, $R=K_p\wedge$, the p-adic $K$-theory spectrum, and $\zeta = 1-p \in \pi_1BGL_1K_p\wedge$. The associated Thom spectrum $(S1)\zeta$ is equivalent to the mod p $K$-theory spectrum $K/p$. The map $\zeta$ is homotopy equivalent to a loop map, so the Thom spectrum has an $A_\infty$-ring structure. I will compute $\pi_*THH{K_p\wedge}(K/p)$ using its description as a Thom spectrum.

Summary

We haven't generated a summary for this paper yet.