Adaptive Optimal Scaling of Metropolis-Hastings Algorithms Using the Robbins-Monro Process (1006.3690v1)
Abstract: We present an adaptive method for the automatic scaling of Random-Walk Metropolis-Hastings algorithms, which quickly and robustly identifies the scaling factor that yields a specified overall sampler acceptance probability. Our method relies on the use of the Robbins-Monro search process, whose performance is determined by an unknown steplength constant. We give a very simple estimator of this constant for proposal distributions that are univariate or multivariate normal, together with a sampling algorithm for automating the method. The effectiveness of the algorithm is demonstrated with both simulated and real data examples. This approach could be implemented as a useful component in more complex adaptive Markov chain Monte Carlo algorithms, or as part of automated software packages.