Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Deterministic Sampling of Sparse Trigonometric Polynomials (1006.2221v2)

Published 11 Jun 2010 in math.NA, cs.IT, and math.IT

Abstract: One can recover sparse multivariate trigonometric polynomials from few randomly taken samples with high probability (as shown by Kunis and Rauhut). We give a deterministic sampling of multivariate trigonometric polynomials inspired by Weil's exponential sum. Our sampling can produce a deterministic matrix satisfying the statistical restricted isometry property, and also nearly optimal Grassmannian frames. We show that one can exactly reconstruct every $M$-sparse multivariate trigonometric polynomial with fixed degree and of length $D$ from the determinant sampling $X$, using the orthogonal matching pursuit, and $# X$ is a prime number greater than $(M\log D)2$. This result is almost optimal within the $(\log D)2 $ factor. The simulations show that the deterministic sampling can offer reconstruction performance similar to the random sampling.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)