Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the critical behavior of the Susceptible-Infected-Recovered (SIR) model on a square lattice

Published 10 Jun 2010 in cond-mat.dis-nn, cond-mat.stat-mech, and physics.bio-ph | (1006.2129v2)

Abstract: By means of numerical simulations and epidemic analysis, the transition point of the stochastic, asynchronous Susceptible-Infected-Recovered (SIR) model on a square lattice is found to be c_0=0.1765005(10), where c is the probability a chosen infected site spontaneously recovers rather than tries to infect one neighbor. This point corresponds to an infection/recovery rate of lambda_c = (1-c_0)/c_0 = 4.66571(3) and a net transmissibility of (1-c_0)/(1 + 3 c_0) = 0.538410(2), which falls between the rigorous bounds of the site and bond thresholds. The critical behavior of the model is consistent with the 2-d percolation universality class, but local growth probabilities differ from those of dynamic percolation cluster growth, as is demonstrated explicitly.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.