Papers
Topics
Authors
Recent
2000 character limit reached

Minimizing a sum of submodular functions

Published 10 Jun 2010 in cs.DS | (1006.1990v2)

Abstract: We consider the problem of minimizing a function represented as a sum of submodular terms. We assume each term allows an efficient computation of {\em exchange capacities}. This holds, for example, for terms depending on a small number of variables, or for certain cardinality-dependent terms. A naive application of submodular minimization algorithms would not exploit the existence of specialized exchange capacity subroutines for individual terms. To overcome this, we cast the problem as a {\em submodular flow} (SF) problem in an auxiliary graph, and show that applying most existing SF algorithms would rely only on these subroutines. We then explore in more detail Iwata's capacity scaling approach for submodular flows (Math. Programming, 76(2):299--308, 1997). In particular, we show how to improve its complexity in the case when the function contains cardinality-dependent terms.

Citations (63)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.