Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight and simple Web graph compression (1006.0809v2)

Published 4 Jun 2010 in cs.DS

Abstract: Analysing Web graphs has applications in determining page ranks, fighting Web spam, detecting communities and mirror sites, and more. This study is however hampered by the necessity of storing a major part of huge graphs in the external memory, which prevents efficient random access to edge (hyperlink) lists. A number of algorithms involving compression techniques have thus been presented, to represent Web graphs succinctly but also providing random access. Those techniques are usually based on differential encodings of the adjacency lists, finding repeating nodes or node regions in the successive lists, more general grammar-based transformations or 2-dimensional representations of the binary matrix of the graph. In this paper we present two Web graph compression algorithms. The first can be seen as engineering of the Boldi and Vigna (2004) method. We extend the notion of similarity between link lists, and use a more compact encoding of residuals. The algorithm works on blocks of varying size (in the number of input lines) and sacrifices access time for better compression ratio, achieving more succinct graph representation than other algorithms reported in the literature. The second algorithm works on blocks of the same size, in the number of input lines, and its key mechanism is merging the block into a single ordered list. This method achieves much more attractive space-time tradeoffs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.