Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Stochastic Wave Equation with Multiplicative Fractional Noise: a Malliavin calculus approach (1005.5275v1)

Published 28 May 2010 in math.PR

Abstract: We consider the stochastic wave equation with multiplicative noise, which is fractional in time with index $H>1/2$, and has a homogeneous spatial covariance structure given by the Riesz kernel of order $\alpha$. The solution is interpreted using the Skorohod integral. We show that the sufficient condition for the existence of the solution is $\alpha>d-2$, which coincides with the condition obtained in Dalang (1999), when the noise is white in time. Under this condition, we obtain estimates for the $p$-th moments of the solution, we deduce its H\"older continuity, and we show that the solution is Malliavin differentiable of any order. When $d \leq 2$, we prove that the first-order Malliavin derivative of the solution satisfies a certain integral equation.

Summary

We haven't generated a summary for this paper yet.