Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Differentiation Theory for Itô's Calculus (1005.4357v1)

Published 24 May 2010 in math.PR and math.CA

Abstract: A peculiar feature of It^o's calculus is that it is an integral calculus that gives no explicit derivative with a systematic differentiation theory counterpart, as in elementary calculus. So, can we define a pathwise stochastic derivative of semimartingales with respect to Brownian motion that leads to a differentiation theory counterpart to It^o's integral calculus? From It^o's definition of his integral, such a derivative must be based on the quadratic covariation process. We give such a derivative in this note and we show that it leads to a fundamental theorem of stochastic calculus, a generalized stochastic chain rule that includes the case of convex functions acting on continuous semimartingales, and the stochastic mean value and Rolle's theorems. In addition, it interacts with basic algebraic operations on semimartingales similarly to the way the deterministic derivative does on deterministic functions, making it natural for computations. Such a differentiation theory leads to many interesting applications some of which we address in an upcoming article.

Summary

We haven't generated a summary for this paper yet.