Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological obstructions to totally skew embeddings (1005.3709v2)

Published 20 May 2010 in math.AT and math.DG

Abstract: Following Ghomi and Tabachnikov we study topological obstructions to totally skew embeddings of a smooth manifold M in Euclidean spaces. This problem is naturally related to the question of estimating the geometric dimension of the stable normal bundle of the configuration space F_2(M) of ordered pairs of distinct points in M. We demonstrate that in a number of interesting cases the lower bounds obtained by this method are quite accurate and very close to the best known general upper bound. We also provide some evidence for the conjecture that each n-dimensional, compact smooth manifold Mn (n>1), admits a totally skew embedding in the Euclidean space of dimension N = 4n-2alpha(n)+1 where alpha(n)=number of non-zero digits in the binary representation of n. This is a revised version of the paper (accepted for publication in A.M.S. Transactions).

Summary

We haven't generated a summary for this paper yet.