Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster tilting objects in generalized higher cluster categories (1005.3564v2)

Published 19 May 2010 in math.RT

Abstract: We prove the existence of an $m$-cluster tilting object in a generalized $m$-cluster category which is $(m+1)$-Calabi-Yau and Hom-finite, arising from an $(m+2)$-Calabi-Yau dg algebra. This is a generalization of the result for the ${m = 1}$ case in Amiot's Ph.~D.~thesis. Our results apply in particular to higher cluster categories associated to suitable finite-dimensional algebras of finite global dimension, and higher cluster categories associated to Ginzburg dg categories coming from suitable graded quivers with superpotential.

Summary

We haven't generated a summary for this paper yet.