Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Extreme Family of Generalized Frobenius Numbers (1005.2692v2)

Published 15 May 2010 in math.NT and math.CO

Abstract: We study a generalization of the \emph{Frobenius problem}: given $k$ positive relatively prime integers, what is the largest integer $g_0$ that cannot be represented as a nonnegative integral linear combination of these parameters? More generally, what is the largest integer $g_s$ that has exactly $s$ such representations? We illustrate a family of parameters, based on a paper by Tripathi, whose generalized Frobenius numbers $g_0, \ g_1, \ g_2, ...$ exhibit unnatural jumps; namely, $g_0, \ g_1, \ g_k, \ g_{\binom{k+1}{k-1}}, \ g_{\binom{k+2}{k-1}}, ...$ form an arithmetic progression, and any integer larger than $g_{\binom{k+j}{k-1}}$ has at least $\binom{k+j+1}{k-}$ representations. Along the way, we introduce a variation of a generalized Frobenius number and prove some basic results about it.

Summary

We haven't generated a summary for this paper yet.