Papers
Topics
Authors
Recent
2000 character limit reached

The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximal monotone

Published 13 May 2010 in math.FA and math.OC | (1005.2247v2)

Abstract: The most important open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximal monotone operators provided that Rockafellar's constraint qualification holds. In this paper, we prove the maximal monotonicity of $A+B$ provided that $A$ and $B$ are maximal monotone operators such that $\dom A\cap\inte\dom B\neq\varnothing$, $A+N_{\overline{\dom B}}$ is of type (FPV), and $\dom A\cap\overline{\dom B}\subseteq\dom B$. The proof utilizes the Fitzpatrick function in an essential way.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.