Two-sided estimates for stock price distribution densities in jump-diffusion models (1005.1917v1)
Abstract: We consider uncorrelated Stein-Stein, Heston, and Hull-White models and their perturbations by compound Poisson processes with jump amplitudes distributed according to a double exponential law. Similar perturbations of the Black-Scholes model were studied by S. Kou. For perturbed stochastic volatility models, we obtain two-sided estimates for the stock price distribution density and compare the tail behavior of this density before and after perturbation. It is shown that if the value of the parameter, characterizing the right tail of the double exponential law, is small, then the stock price density in the perturbed model decays slower than the density in the original model. On the other hand, if the value of this parameter is large, then there are no significant changes in the behavior of the stock price distribution density.