Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Linear-time Algorithm for Sparsification of Unweighted Graphs (1005.0670v1)

Published 5 May 2010 in cs.DS

Abstract: Given an undirected graph $G$ and an error parameter $\epsilon > 0$, the {\em graph sparsification} problem requires sampling edges in $G$ and giving the sampled edges appropriate weights to obtain a sparse graph $G_{\epsilon}$ with the following property: the weight of every cut in $G_{\epsilon}$ is within a factor of $(1\pm \epsilon)$ of the weight of the corresponding cut in $G$. If $G$ is unweighted, an $O(m\log n)$-time algorithm for constructing $G_{\epsilon}$ with $O(n\log n/\epsilon2)$ edges in expectation, and an $O(m)$-time algorithm for constructing $G_{\epsilon}$ with $O(n\log2 n/\epsilon2)$ edges in expectation have recently been developed (Hariharan-Panigrahi, 2010). In this paper, we improve these results by giving an $O(m)$-time algorithm for constructing $G_{\epsilon}$ with $O(n\log n/\epsilon2)$ edges in expectation, for unweighted graphs. Our algorithm is optimal in terms of its time complexity; further, no efficient algorithm is known for constructing a sparser $G_{\epsilon}$. Our algorithm is Monte-Carlo, i.e. it produces the correct output with high probability, as are all efficient graph sparsification algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.