Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal rigid subcategories in 2-Calabi-Yau triangulated categories (1004.5475v3)

Published 30 Apr 2010 in math.RT and math.RA

Abstract: We study the maximal rigid subcategories in $2-$CY triangulated categories and their endomorphism algebras. Cluster tilting subcategories are obviously maximal rigid; we prove that the converse is true if the $2-$CY triangulated categories admit a cluster tilting subcategory. As a generalization of a result of [KR], we prove that any maximal rigid subcategory is Gorenstein with Gorenstein dimension at most 1. Similar as cluster tilting subcategory, one can mutate maximal rigid subcategories at any indecomposable object. If two maximal rigid objects are reachable via mutations, then their endomorphism algebras have the same representation type.

Summary

We haven't generated a summary for this paper yet.