2000 character limit reached
Abelian link invariants and homology (1004.5211v1)
Published 29 Apr 2010 in math-ph, hep-th, and math.MP
Abstract: We consider the link invariants defined by the quantum Chern-Simons field theory with compact gauge group U(1) in a closed oriented 3-manifold M. The relation of the abelian link invariants with the homology group of the complement of the links is discussed. We prove that, when M is a homology sphere or when a link -in a generic manifold M- is homologically trivial, the associated observables coincide with the observables of the sphere S3. Finally we show that the U(1) Reshetikhin-Turaev surgery invariant of the manifold M is not a function of the homology group only, nor a function of the homotopy type of M alone.