Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Ordered forests, permutations and iterated integrals (1004.5208v1)

Published 29 Apr 2010 in math.CO

Abstract: We construct an explicit Hopf algebra isomorphism from the algebra of heap-ordered trees to that of quasi-symmetric functions, generated by formal permutations, which is a lift of the natural projection of the Connes-Kreimer algebra of decorated rooted trees onto the shuffle algebra. This isomorphism gives a universal way of lifting measure-indexed characters of the Connes-Kreimer algebra into measure-indexed characters of the shuffle algebra, already introduced in \cite{Unterberger} in the framework of rough path theory as the so-called Fourier normal ordering algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.