Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Analysis of Sparse Recovery Based on Constrained Minimal Singular Values (1004.4222v2)

Published 23 Apr 2010 in cs.IT and math.IT

Abstract: The stability of sparse signal reconstruction is investigated in this paper. We design efficient algorithms to verify the sufficient condition for unique $\ell_1$ sparse recovery. One of our algorithm produces comparable results with the state-of-the-art technique and performs orders of magnitude faster. We show that the $\ell_1$-constrained minimal singular value ($\ell_1$-CMSV) of the measurement matrix determines, in a very concise manner, the recovery performance of $\ell_1$-based algorithms such as the Basis Pursuit, the Dantzig selector, and the LASSO estimator. Compared with performance analysis involving the Restricted Isometry Constant, the arguments in this paper are much less complicated and provide more intuition on the stability of sparse signal recovery. We show also that, with high probability, the subgaussian ensemble generates measurement matrices with $\ell_1$-CMSVs bounded away from zero, as long as the number of measurements is relatively large. To compute the $\ell_1$-CMSV and its lower bound, we design two algorithms based on the interior point algorithm and the semi-definite relaxation.

Citations (54)

Summary

We haven't generated a summary for this paper yet.