Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Framework for Graph Sparsification (1004.4080v1)

Published 23 Apr 2010 in cs.DS

Abstract: Given a weighted graph $G$ and an error parameter $\epsilon > 0$, the {\em graph sparsification} problem requires sampling edges in $G$ and giving the sampled edges appropriate weights to obtain a sparse graph $G_{\epsilon}$ (containing O(n\log n) edges in expectation) with the following property: the weight of every cut in $G_{\epsilon}$ is within a factor of $(1\pm \epsilon)$ of the weight of the corresponding cut in $G$. We provide a generic framework that sets out sufficient conditions for any particular sampling scheme to result in good sparsifiers, and obtain a set of results by simple instantiations of this framework. The results we obtain include the following: (1) We improve the time complexity of graph sparsification from O(m\log3 n) to O(m + n\log4 n) for graphs with polynomial edge weights. (2) We improve the time complexity of graph sparsification from O(m\log3 n) to O(m\log2 n) for graphs with arbitrary edge weights. (3) If the size of the sparsifier is allowed to be O(n\log2 n/\epsilon2) instead of O(n\log n/\epsilon2), we improve the time complexity of sparsification to O(m) for graphs with polynomial edge weights. (4) We show that sampling using standard connectivities results in good sparsifiers, thus resolving an open question of Benczur and Karger. As a corollary, we give a simple proof of (a slightly weaker version of) a result due to Spielman and Srivastava showing that sampling using effective resistances produces good sparsifiers. (5) We give a simple proof showing that sampling using strong connectivities results in good sparsifiers, a result obtained previously using a more involved proof by Benczur and Karger. A key ingredient of our proofs is a generalization of bounds on the number of small cuts in an undirected graph due to Karger; this generalization might be of independent interest.

Citations (2)

Summary

We haven't generated a summary for this paper yet.