Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact linear modeling using Ore algebras (1004.2924v1)

Published 16 Apr 2010 in math.OC, cs.SC, and math.RA

Abstract: Linear exact modeling is a problem coming from system identification: Given a set of observed trajectories, the goal is find a model (usually, a system of partial differential and/or difference equations) that explains the data as precisely as possible. The case of operators with constant coefficients is well studied and known in the systems theoretic literature, whereas the operators with varying coefficients were addressed only recently. This question can be tackled either using Gr\"obner bases for modules over Ore algebras or by following the ideas from differential algebra and computing in commutative rings. In this paper, we present algorithmic methods to compute "most powerful unfalsified models" (MPUM) and their counterparts with variable coefficients (VMPUM) for polynomial and polynomial-exponential signals. We also study the structural properties of the resulting models, discuss computer algebraic techniques behind algorithms and provide several examples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.