Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spoken Language Identification Using Hybrid Feature Extraction Methods (1003.5623v1)

Published 29 Mar 2010 in cs.SD and cs.LG

Abstract: This paper introduces and motivates the use of hybrid robust feature extraction technique for spoken language identification (LID) system. The speech recognizers use a parametric form of a signal to get the most important distinguishable features of speech signal for recognition task. In this paper Mel-frequency cepstral coefficients (MFCC), Perceptual linear prediction coefficients (PLP) along with two hybrid features are used for language Identification. Two hybrid features, Bark Frequency Cepstral Coefficients (BFCC) and Revised Perceptual Linear Prediction Coefficients (RPLP) were obtained from combination of MFCC and PLP. Two different classifiers, Vector Quantization (VQ) with Dynamic Time Warping (DTW) and Gaussian Mixture Model (GMM) were used for classification. The experiment shows better identification rate using hybrid feature extraction techniques compared to conventional feature extraction methods.BFCC has shown better performance than MFCC with both classifiers. RPLP along with GMM has shown best identification performance among all feature extraction techniques.

Citations (34)

Summary

We haven't generated a summary for this paper yet.