Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Diffusion processes and coalescent trees (1003.4650v1)

Published 24 Mar 2010 in math.PR, math.ST, q-bio.PE, and stat.TH

Abstract: We dedicate this paper to Sir John Kingman on his 70th Birthday. In modern mathematical population genetics the ancestral history of a population of genes back in time is described by John Kingman's coalescent tree. Classical and modern approaches model gene frequencies by diffusion processes. This paper, which is partly a review, discusses how coalescent processes are dual to diffusion processes in an analytic and probabilistic sense. Bochner (1954) and Gasper (1972) were interested in characterizations of processes with Beta stationary distributions and Jacobi polynomial eigenfunctions. We discuss the connection with Wright--Fisher diffusions and the characterization of these processes. Subordinated Wright--Fisher diffusions are of this type. An Inverse Gaussian subordinator is interesting and important in subordinated Wright--Fisher diffusions and is related to the Jacobi Poisson Kernel in orthogonal polynomial theory. A related time-subordinated forest of non-mutant edges in the Kingman coalescent is novel.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.