Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analytical Approach to Document Clustering Based on Internal Criterion Function (1003.1814v1)

Published 9 Mar 2010 in cs.IR

Abstract: Fast and high quality document clustering is an important task in organizing information, search engine results obtaining from user query, enhancing web crawling and information retrieval. With the large amount of data available and with a goal of creating good quality clusters, a variety of algorithms have been developed having quality-complexity trade-offs. Among these, some algorithms seek to minimize the computational complexity using certain criterion functions which are defined for the whole set of clustering solution. In this paper, we are proposing a novel document clustering algorithm based on an internal criterion function. Most commonly used partitioning clustering algorithms (e.g. k-means) have some drawbacks as they suffer from local optimum solutions and creation of empty clusters as a clustering solution. The proposed algorithm usually does not suffer from these problems and converge to a global optimum, its performance enhances with the increase in number of clusters. We have checked our algorithm against three different datasets for four different values of k (required number of clusters).

Citations (1)

Summary

We haven't generated a summary for this paper yet.