Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Functional Itô calculus and stochastic integral representation of martingales (1002.2446v5)

Published 11 Feb 2010 in math.PR and math.FA

Abstract: We develop a nonanticipative calculus for functionals of a continuous semimartingale, using an extension of the Ito formula to path-dependent functionals which possess certain directional derivatives. The construction is based on a pathwise derivative, introduced by Dupire, for functionals on the space of right-continuous functions with left limits. We show that this functional derivative admits a suitable extension to the space of square-integrable martingales. This extension defines a weak derivative which is shown to be the inverse of the Ito integral and which may be viewed as a nonanticipative "lifting" of the Malliavin derivative. These results lead to a constructive martingale representation formula for Ito processes. By contrast with the Clark-Haussmann-Ocone formula, this representation only involves nonanticipative quantities which may be computed pathwise.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.