Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Online Stochastic Packing Applied to Display Ad Allocation (1001.5076v2)

Published 28 Jan 2010 in cs.DS

Abstract: Inspired by online ad allocation, we study online stochastic packing linear programs from theoretical and practical standpoints. We first present a near-optimal online algorithm for a general class of packing linear programs which model various online resource allocation problems including online variants of routing, ad allocations, generalized assignment, and combinatorial auctions. As our main theoretical result, we prove that a simple primal-dual training-based algorithm achieves a (1 - o(1))-approximation guarantee in the random order stochastic model. This is a significant improvement over logarithmic or constant-factor approximations for the adversarial variants of the same problems (e.g. factor 1 - 1/e for online ad allocation, and \log m for online routing). We then focus on the online display ad allocation problem and study the efficiency and fairness of various training-based and online allocation algorithms on data sets collected from real-life display ad allocation system. Our experimental evaluation confirms the effectiveness of training-based primal-dual algorithms on real data sets, and also indicate an intrinsic trade-off between fairness and efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube