Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A digital interface for Gaussian relay networks: lifting codes from the discrete superposition model to Gaussian relay networks (1001.2900v1)

Published 17 Jan 2010 in cs.IT and math.IT

Abstract: For every Gaussian relay network with a single source-destination pair, it is known that there exists a corresponding deterministic network called the discrete superposition network that approximates its capacity uniformly over all SNR's to within a bounded number of bits. The next step in this program of rigorous approximation is to determine whether coding schemes for discrete superposition models can be lifted to Gaussian relay networks with a bounded rate loss independent of SNR. We establish precisely this property and show that the superposition model can thus serve as a strong surrogate for designing codes for Gaussian relay networks. We show that a code for a Gaussian relay network, with a single source-destination pair and multiple relay nodes, can be designed from any code for the corresponding discrete superposition network simply by pruning it. In comparison to the rate of the discrete superposition network's code, the rate of the Gaussian network's code only reduces at most by a constant that is a function only of the number of nodes in the network and independent of channel gains. This result is also applicable for coding schemes for MIMO Gaussian relay networks, with the reduction depending additionally on the number of antennas. Hence, the discrete superposition model can serve as a digital interface for operating Gaussian relay networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.