Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Hardness and Approximation Algorithms for L-Diversity (0912.5426v1)

Published 30 Dec 2009 in cs.DB

Abstract: The existing solutions to privacy preserving publication can be classified into the theoretical and heuristic categories. The former guarantees provably low information loss, whereas the latter incurs gigantic loss in the worst case, but is shown empirically to perform well on many real inputs. While numerous heuristic algorithms have been developed to satisfy advanced privacy principles such as l-diversity, t-closeness, etc., the theoretical category is currently limited to k-anonymity which is the earliest principle known to have severe vulnerability to privacy attacks. Motivated by this, we present the first theoretical study on l-diversity, a popular principle that is widely adopted in the literature. First, we show that optimal l-diverse generalization is NP-hard even when there are only 3 distinct sensitive values in the microdata. Then, an (l*d)-approximation algorithm is developed, where d is the dimensionality of the underlying dataset. This is the first known algorithm with a non-trivial bound on information loss. Extensive experiments with real datasets validate the effectiveness and efficiency of proposed solution.

Citations (67)

Summary

We haven't generated a summary for this paper yet.