Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-free pairs of groups I: Context-free pairs and graphs (0911.0090v1)

Published 31 Oct 2009 in math.GR, cs.IT, and math.IT

Abstract: Let $G$ be a finitely generated group, $A$ a finite set of generators and $K$ a subgroup of $G$. We call the pair $(G,K)$ context-free if the set of all words over $A$ that reduce in $G$ to an element of $K$ is a context-free language. When $K$ is trivial, $G$ itself is called context-free; context-free groups have been classified more than 20 years ago in celebrated work of Muller and Schupp as the virtually free groups. Here, we derive some basic properties of such group pairs. Context-freeness is independent of the choice of the generating set. It is preserved under finite index modifications of $G$ and finite index enlargements of $K$. If $G$ is virtually free and $K$ is finitely generated then $(G,K)$ is context-free. A basic tool is the following: $(G,K)$ is context-free if and only if the Schreier graph of $(G,K)$ with respect to $A$ is a context-free graph.

Citations (14)

Summary

We haven't generated a summary for this paper yet.