Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correctness Kernels of Abstract Interpretations (0910.4748v3)

Published 25 Oct 2009 in cs.PL and cs.LO

Abstract: In abstract interpretation-based static analysis, approximation is encoded by abstract domains. They provide systematic guidelines for designing abstract semantic functions that approximate some concrete system behaviors under analysis. It may happen that an abstract domain contains redundant information for the specific purpose of approximating a given concrete semantic function. This paper introduces the notion of correctness kernel of abstract interpretations, a methodology for simplifying abstract domains, i.e. removing abstract values from them, in a maximal way while retaining exactly the same approximate behavior of the system under analysis. We show that in abstract model checking correctness kernels provide a simplification paradigm of the abstract state space that is guided by examples, meaning that this simplification preserves spuriousness of examples (i.e., abstract paths). In particular, we show how correctness kernels can be integrated with the well-known CEGAR (CounterExample-Guided Abstraction Refinement) methodology.

Citations (5)

Summary

We haven't generated a summary for this paper yet.