Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressive Sensing Based Opportunistic Protocol for Throughput Improvement in Wireless Networks (0909.3055v1)

Published 16 Sep 2009 in cs.IT and math.IT

Abstract: A key feature in the design of any MAC protocol is the throughput it can provide. In wireless networks, the channel of a user is not fixed but varies randomly. Thus, in order to maximize the throughput of the MAC protocol at any given time, only users with large channel gains should be allowed to transmit. In this paper, compressive sensing based opportunistic protocol for throughput improvement in wireless networks is proposed. The protocol is based on the traditional protocol of R-ALOHA which allows users to compete for channel access before reserving the channel to the best user. We use compressive sensing to find the best user, and show that the proposed protocol requires less time for reservation and so it outperforms other schemes proposed in literature. This makes the protocol particularly suitable for enhancing R-ALOHA in fast fading environments. We consider both analog and digital versions of the protocol where the channel gains sent by the user are analog and digital, respectively.

Summary

We haven't generated a summary for this paper yet.